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Abstract-A probabilistic finite-element approach for modelling the temperature field in structures is 
proposed. The theoretical formulation of the problem is described. It presents probabilistic distributions 
for temperature taking into account the random thermal properties of material. An example of the thermal 

analysis in random conditions is demonstrated. 

INTRODUCTION 

THE ANALYSIS of thermal problems in structures leads 
to the building of mathematical models and repre- 

senting external disturbances. For those designing 
important structures the consequences of thermal 
damage makes a probabilistic approach inescapable. 
The application of probabilistic processes to the rep- 

resentation of thermal boundary conditions and the 
use of finite elements to model structures could be a 
convenient tool for thermal analysis. The literature on 
the probabilistic methods in mechanics for problems 
involving time-independent uncertainties is quite con- 

siderable and so only a few sample references are 
indicated here [l-4]. It can be classified into two major 
categories, i.e. methods using a statistical approach 
and those using a non-statistical approach. Non-stat- 
istical approaches include stochastic finite element 
methods [5-71. The probabilistic methods for the non- 
statistical analysis of structural and continuum prob- 

lems have been discussed in refs. [8, 91. The proba- 
bilistic methods for the transient heat flow analysis 

of random field problems by the finite element method 
have not been undertaken. This paper describes the 
theoretical aspects of the temperature field with ran- 

dom material properties and boundary conditions in 
the case when the problem of heat flow is formulated 
in terms of finite elements. Heat transfer phenomena 
described by matrix equations based on the Galerkin 
method are widely used [lO-121 and their formu- 
lations can be found in general textbooks on finite 
element analysis [ 131. 

HEAT FLOW EQUATIONS 

The variation of temperature T with time t in a 
two-dimensional region R, relative to the Cartesian 
coordinates x is governed by the equation 

$= V(IVT)+q (1) 

where Iz is the conductivity tensor, c the heat capacity, 
p the density, and y the rate of heat generation. At 

the surface of the body the temperature may be pre- 
scribed or the flow of heat due to convection or radi- 
ation may exist. The region Q is divided into a number 
of finite elements Q’ with shape function N’ associated 
with each node i. The unknown function Tis approxi- 

mated through the solution domain at any time t by 

T = i NY(t) = NT (2) 
I= I 

where T is the column vector of nodal values T’. 
The substitution of expansion (2) into equation (1) 

and the application of the Galerkin method produce 
the following equation : 

(=T+&T = F. (3) 

The form of the matrices 6, 6 and the vector F to- 
gether with a description of the temporal discretiz- 
ation of equation (3) have been described by many 

authors (see refs. [lO-121 for instance) and will not 
be considered further. 

FORMULATION OF THE PROBLEM 

We consider equation (3) in which the matrices 
(z, & and the vectors F and T are functions of the 
discretized random variable vector b = b(x) 

c(b)*(b. t) + $(b)T(b. f) = F(b, t). (4) 

The random function b(x) is approximated using 
shape functions N,(X) by 

b(x) = i N,(x)b, = Nb (5) 
I== 1 

where b, are the nodal values of b(x), that is the values 
ofbat.u,i= l,..., y. 

The mean value of b denoted by E(b) is expressed 
as 

E(b) = i N,E(b,) 
,= I 

(6) 

and the variance by 
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I’(b) = x’/?(b)’ (7’ P, = i ~[~E(F,,,,,(/))]cov(h,,h,)j 

where x is the coefficient of variation. 
‘,, I 

All the random functions are expanded about the 
mean value E(b) via a Taylor series and only up to 
second-order terms are retained. For any small par- 

- ,,$ I[~E(~,,,,~)E(~(l))+jE(~,,,,~)E(T(t)) 

ameter ;’ we have +E(I;,,)E(~,,,(r))+E(~~,)E(T,,~(t))lcov (h,,h,)) 

T(b. t) = &T(t))+; i E(T,,(t))M, 
(19) 

/~_ I and 

where Ah, represents the first-order variation of h, 

about E(h,) and for any function cov (6,, h,) = [ V(b(x,))V(h(x,))] “2R(b(s,). h(x,)) (21) 

E(,c/(x)) = ,9(-r, E(b)) (9) and R(b(x,), b(s,)) is the autocorrelation. 

(10) 
EXPECTATION VALUES OF TEMPERATURE 

7 

E(,9+) = & (11) The definitions for the expectation and auto- 
I 1 covariance of the temperature are given by 

In a similar manner we can express c(b), Y(b) and I 
F(b. t) as E(T) = 

s 
T(b, t)f(b) db (22) 

7 

and 

+Y,$, E(~~,$W~, (12) 
Cov(T’, T’) = s * (T’--E(T’))(P-E(T’))f‘(b)db 

I 

K’(b) = E(&+s’ i E(&,)Ah 
(13) 

/= I 

+Y i: E(&,,,,)Ab,Ab, (13) 

where f’(b) is the joint probability density function. 
The second-order estimate of the mean value of T is 

r.,= 1 obtained from equation (22) to give 

F(b, t) = E(F) +y i E(F,,(t))Ah, 
/= I E(T) = T@(b)) + : i: E(Th,h,) Cov (h,, b,) (24) 

1.17 I 
+ ii” 2 E(F, ,,,, )Ab,Ah,. (14) 

,.,= I The thermal conductivity matrix r for an element e 

Substitution of equations (8) and (I?)-( 14) into equa- 
can be expressed as [lo-l 21 

tion (3) and collecting terms of order I, y and y2 yields 
the following equations for E(T(t)), E(T,,(t)) and E(f’) = 

s 
e”(x)Z(x, b@‘(x) dn’ (25) 

HT,+,U)) : 
n’ 

zeroth order where the matrix 8’ describes the temperature gradi- 
ents within the element as a function of nodal tem- 

E(C)E(~(t))+E(Y)E(T(r)) = E(F(t)) ; (15) peratures 

first-order VT = @(x)T (26) 

E(G)E(TT,(N +E(&)E(T,,(t)) = E(F,,,(E(T), t)) 

(16) 
and 

where 

E(F,,,(E(T), t)) = E@,(t)) 
E(CJ = s C(x. b)N’N’dR (27) 

IY 

-(E(~,)~(~(t))+~(~~,)~(T(t)))~ (17) where C= c-p 

second order 

(18) 
E(F) = 

s 
N’q dR. 

Cl” 
(28) 
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REDUCTION OF THE FORM OF 
THE GOVERNING EQUATIONS 

Consider the corre!ated full covariance matrix 

cov (b,, bj) = B, (29) 

and an uncorrelated diagonal variance matrix 

V(Ci, Ci) = ~(c~)~~j = rii (30) 

where g is a diagonal matrix and 6, the Kronecker 
delta. Transformation of matrix @to matrix r can be 
expressed by the eigenproblem 

BY== (31) 

where the matrix w possesses the following property : 

aI’$ = #NT = E, (32) 

where EY is the identity matrix and superscript T 
denotes the transpose. 

The transformed random variable c can be given 

by 

c = KTb (33) 

or 

ci = i N,,b,, (34) 
,= I 

The mean and variance of c are given by 

E(c) = gT_E(b) 

and 

V(Ci) = I-<> 

(35) 

An introduction of an uncorrelated random vector E 
reduces the zeroth-, first-, and second-order equations 
given by equations (I 5)-(20) to the following form : 

zeroth order 

E(G)E(~(r))+E(~‘)E(T(r))+E(F(t)) = 0; (36) 

first order 

E(G)E($,.,U)) +U&)E(T,,(r)) 

+E(F,,(E(T), t)) = 0, i = 1,. . . .r 

where 

E(F,,;(E(T)+ t)) = &F,8(t)) - IE(&)E(T(G) 

+E(&JE(T(t))], i = 1,. . . ,r; 

second order 

E(C)&(t)) +E(&)E(T,(t)) 

+E(F,(E(T), E(T), r)) = 0 

where 

E(F,(HIX JYT,;), 0) = f: I(:E(F&))) I’&)) 
i= 1 

and 

E(Tz(~)) = i x E(Tc,c,(f)) v(ci). 
,= I 

EXAMPLE 

The method developed in the above sections has 
been tested by studying the temperature field in the 
rectangular region undergoing external heat rates. A 
two-dimensional region of the analysis is presented in 
Fig. 1. Assume the following boundary conditions: 
11 random variables on the upper boundary surface 
(see Fig. 1) and ~T/&I = 0 on the other boundary sides 
of the region. The domain is divided by four-nodal 
isoparametric elements. 

Geometrical and material properties are as follows : 
L = 10 cm. heat capacity c = I J gg’ Km’, thermal 
conductivity k = 1 W cm-’ K-‘, density p = 1 g 
cme3. 

Random heat sources are assumed as follows: I1 
random variables, coeficient of variation 0.1, mean 
heat rate 4, = 1 W cm- 3, spatial correlation R(x,. x,) = 

exp (- abs (xi-+/6L). 
Random material : 3 random variables, coefficient 

of variation 0.1. spatial correlation &xi, x,) = 
exp (-abs (.x,-.x,)/l .5L). The results of the analy- 
sis for point A chosen in the centre of the region 
are presented in Fig. 2. It is seen that the tem- 
perature at this point varies in the interval of tem- 
peratures from upper to lower values because of the 
random variables assumed in the example. In practice 
temperatures in the analysed regions are functions of 
random material properties and boundary conditions. 
The result indicates that changes of material charac- 
teristics should be taken into account in the face of 
design of constructions. 

FINAL REMARKS 

The development of numerical methods for thermal 
analysis in continua with random properties requires 
the unification of mechanics, probability and numeri- 
cal methods. It is an attractive tool for computation 
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FIG. 1. Region of analysis. 
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Fit;. 2. Temperature distribution at point A : -. mean 
value : ., upper value : , lower value. 

of thermal variables considering random changes in 
material and boundary conditions. An application of 
the finite element method to discretization of the 
region with the heat flow equation is a convenient 

approach for the model presented. 
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CHAMP DE TEMPERATURE DANS DES CONDITIONS ALEATOIRES 

R&urn-n propose une approche probabiliste aux elements finis pour modtliser le champ de temperature 
dans des structures. La formulation thtorique du problbme est d&rite. Elle prtsente les distributions 
probabilistes de la temperature en prenant en compte les proprietes thermiques aleatoires des materiaux. 

On donne un exemple de l’analyse thermique dans des conditions aleatoires 

TEMPERATURFELD BE1 BELIEBIGEN BEDINGUNGEN 

Zusammenfassung-Das Temperaturfeld in Strukturen wird mit Hilfe des Verfahrens der finiten Elemente 
ngherungsweise dargestellt. Die theoretische Beschreibung des Problems wird vorgestellt. Die naherungs- 
weise berechneten Temperaturverteilungen beriicksichtigen beliebige thermische Stoffeigenschaften. Es 

wird tin Beispiel der thermischen Untersuchungen bei beliebigen Bedingungen gezeigt. 

TEMIIEPATYPHOE l-lOJIE I-IPH l’IPOki3BOJIbHO 3A&4HHbIX YCJIOBMIIX 

tiellpeano*EeH BeponTtioc~~~sB MeroB XoBeBBux 3nehsettToB arm ~oBenssp0saBun TeMnepa- 
TypHOrO BOJtR B ‘3Tpy’tCTyPaX. &IBCL&BBBTC II Teo~HYCCKM IIOCTZUiOBKa 3WWWi, BBJBOPBIOLU~ p&cXIp’Z- 
nenetiBII TchmepaTyp c ywxohf cnygaibfux TeRRoBbIx ceo#crs MaTepHana. TI~BBOBBTCB npBMep 

TBpMBYBCKOrO BHB.XH3B t“T,E tIpOB3BOBbHO SB)BIHHB,X ,‘CnOBHXX. 


